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Modelling fracture in an Al2O3 particle reinforced

AA 6061 alloy using Weibull statistics
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Fracture in an AA 6061 based metal matrix composite (MMC) containing 20 vol % Al2O3

particles is modelled using an axisymmetrical finite element model and a statistical
approach for calculating the strength of reinforcing ceramic particles via the Weibull model.
Within this model, variables such as the volume fraction, particle size and matrix alloy
properties can be varied. When modelling the fracture behaviour of one particle, it is
assumed that the survival probability of the ceramic particle is governed by a Weibull
distribution. Fracture statistics of the MMC is examined by plotting the survival probability
of an Al2O3 particle vs. the macroscopic axial stress applied on the whole MMC. Based on
initial calculations it can be concluded that the relation between the macroscopic applied
stress on the MMC and the survival probability of the ceramic particle can be described by
the Weibull modulus m, as long as the stress distribution in the matrix surrounding the
particle is proportional to the applied load and that triaxial loading of the MMC results in a
lower survival probability compared to uniaxial loading. Fracture behaviour of MMCs can
well be described and a ‘mastercurve’ can be made for various characteristic stresses and
matrix yield stresses at a specific hardening exponent for the matrix material. C© 1999
Kluwer Academic Publishers

1. Introduction
Due to their high strength, high stiffness and high resis-
tance to wear, ceramic particle reinforced metal matrix
composites (MMCs) have attracted considerable atten-
tion in the past two decades. A reason for using any
composite material is the extent to which the qualities
of two or more constituents can be combined, without
seriously accentuating their shortcomings [1]. The most
widely applied metals as matrix material for MMCs are
aluminium and its alloys, since their ductility, formabil-
ity and low density can be combined with the stiffness
and load-bearing capacity of the reinforcement. Micro-
scopically, the mechanism of failure seems to depend
on many factors, such as the strength of the interface
between the particle and the surrounding matrix, the
strength and reliability of the reinforcement and the
matrix mechanical properties [2]. This paper describes
an investigation into modelling of particle cracking.

To study the parameter dependence of Al2O3 parti-
cle fracture in a ductile AA 6061 aluminium matrix, an
axisymmetrical finite element model based on a simple
unit cell is used. A limitation of this continuum mechan-
ics model is that there is no length scale included in the
analyses and the results are thus insensitive to the mi-
crostructural size and specifically to the reinforcement
size. However, this can be overcome by using Weibull
statistics.

Work on commercial aluminium alloys reinforced
with either Al2O3 or SiC particles [3–6] have demon-
strated that reinforcements are broken progressively

during plastic deformation and that the survival proba-
bility decreases with reinforcement size. In this paper,
the survival probability of the reinforcing particles is as-
sumed to be governed by a Weibull distribution. Within
the cell model, variables such as, loading triaxiality, par-
ticle size, particle properties and matrix alloy properties
are varied to investigate the parameter dependence of
particle fracture.

2. Cell model
Micromechanical models for ductile damage and frac-
ture are based on the notion that these physical pro-
cesses can be described by the structural behaviour of
relatively simple unit cells [7]. Cell model calculations
are normally used to study microscopic voids in ductile
materials [8]. However, in this research, a cell model
is used to study metal matrix composites by simulating
their behaviour for varying triaxiality of the stress state.
An acceptable disadvantage of this approach is, that the
relative position of the ceramic particles in the matrix
is fixed.

The continuum is considered to consist of a peri-
odic assemblage of hexagonal unit cells approximated
by circular cylinders, see Fig. 1, which allows for an
axisymmetrical calculation. Every cell of initial length
2L0 and radiusR0 contains a spherical particle of radius
r0. In order to simulate the constraint of the surrounding
material, the cylindrical cell is required to remain cylin-
drical throughout the deformation history, i.e. the top
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Figure 1 Micromechanical modelling of a matrix containing a spherical particle.

and bottom faces as well as both sides should remain
flat and parallel.

During deformation, the surfaces normal to the ax-
ial and radial directions are subjected to homogeneous
displacements in these directions respectively, whereby
the ratio,ρ, of the average applied true stressesσrr and
σzz is kept constant. This ratio is often called the stress
proportionality factor and is given by [9]:

ρ = σrr

σzz
(1)

wherebyσrr is the stress in the radial direction andσzz

in the axial direction.

3. Weibull model
When modelling the survival probability of ceramic,
the Weibull model [10] is often found to be applicable
[11]. If one can assume the flaw size distribution to be
fractal-like, this approach will be valid regardless of
their size [12]. The size of a critical flaw will simply
become smaller and the particle strength increases, as
the particle volume decreases. A fractal distribution will
ensure that there is always a distribution of flaws within
the particles on a scale finer than the particle size.

Using Weibull statistics, the survival probability,S,
of a ceramic particle volume,V , in case of a uniform
stress distribution, is governed by

S= exp

{
− V

V0

(
σ

σ0

)m}
(2)

whereσ is the stress in the particle,σ0 andV0 are two
constants with dimensions of stress and volume (σ0 is
often referred to as the characteristic stress), respec-
tively, which are introduced for dimensional purposes
[13] andm is the Weibull modulus. This equation can
be rewritten, allowing a straight line representation of
gradientm, when ln ln(1/S) is plotted against lnσ :

ln ln
1

S
= ln

(
V

V0

)
+m · ln σ −m · ln σ0 (3)

The strength of a ceramic particle is essentially limited
by pre-existing critical flaws which are present in the
material, i.e. surface and volume flaws. In the present

model, it is assumed that flaws on the surface have no
greater influence than those in the interior. If surface
flaws dominate failure, then the volume term (V/V0)
should be replaced by an area term (A/A0) [12].

4. Finite element calculations
The MMC is modelled with a matrix of AA 6061 (E =
69 GPa,ν=0.33,σys=276 MPa) and 20 vol % Al2O3
particles with a diameter of 4 or 8µm (E=393 GPa,
ν=0.27,σys=2000 GPa, the latter is a fictitious high
value to prevent plastic deformation in the ceramic par-
ticle). E is the Young’s modulus,ν is Poisson’s ratio
andσys is the yield stress. The behaviour of a ductile
aluminium matrix is studied for two hardening expo-
nent valuesn, (i.e. n = 4.35 and 14.94). The first is
a value from literature for AA 6009-T4 [14] measured
on tensile specimens in the extruded direction, the lat-
ter is a value measured in the laboratory, on tensile
specimens AA 6061-T651 taken perpendicular to the
extruded direction. The hardening exponent is defined
in the uniaxial stress-strain relation in the form of a
power law:

ε =


σ

E
if ε ≤ σys

E
σys

E

(
σ

σys

)n

if ε >
σys

E

(4)

whereE is the Young’s modulus andσys is the yield
stress.

Finite element calculations were done forρ =0 (uni-
axial tensile test) and 0.7 (triaxial tensile test). For all
calculations, a particle with a diameter of 4µm, m =
15,σ0 = 350 MPa,σys = 276 MPa, a hardening expo-
nent for the matrix ofn = 14.94 andV0 = 1 mm3 is
considered to be the reference situation for the MMC.

In order to calculate the survival probability of a ce-
ramic particle in an MMC, calculations on the cylindri-
cal unit cell have been performed using the MARC finite
element program [15]. The finite element mesh used for
calculations consisted of 350 isoparametric quadrilat-
eral 4-node elements (140 for the particle and 210 for
the matrix), as shown in Fig. 2. Due to symmetry, only
the region hatched in Fig. 1 needs to be considered.
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Figure 2 Finite element mesh used for calculations;z is axial direction
andr is radial direction.

For every of the four integration points of each finite
element belonging to the particle, the principal stresses
σ1, σ2 andσ3 are calculated and these values are aver-
aged to get the three principal stresses for each element.
Furthermore, the volume of each element is calculated.
Using the stresses, the net applied stressσ in the particle
is calculated using the Dr¨ucker-Prager criterion (from
this point forward this stress will be denoted asσDP):

σDP =
√

1
2

[
(σ1− σ2)2+ (σ2− σ3)2+ (σ3− σ1)2

]
+ 1

3α(σ1+ σ2+ σ3) (5)

Figure 3 The survival probabilitySas a function of macroscopic axial stressσzz for a particle with a diameter of 4µm with loading ratiosρ=0 and
0.7 (m=15,σ0=350 MPa,σys=276 MPa andn=14.94).

whereα is related to the ratio of compression strength
and tensile strength of the material and can be calculated
using the following equation:

α = 3
(σc/σt − 1)

(σc/σt + 1)
(6)

whereσc andσt are the compression strength and tensile
strength respetively. In the present calculationsσc/σt =
10 was used. Now, for a givenσ0 andm, the survival
probabilityScan be calculated.

It should be mentioned that debonding of ceramic
particles is excluded in this investigation, since the
present model does not yet contain a criterion with
which the occurrence of interface failure between the
ceramic particle and its surrounding aluminium matrix
can be calculated.

5. Results and discussion
In this investigation, the parameter dependence of par-
ticle fracture in proportional loading histories is exam-
ined. The parameters varied are the loading ratio via
the constantρ, the Weibull modulusm, the hardening
exponentn for the matrix, the characteristic stressσ0,
the yield stress for the matrixσys and the diameter of the
ceramic particle. For all calculations, data are plotted
against the macroscopic applied axial stressσzz, since
σDP varies from element to element.

5.1. Reference configuration
In Fig. 3, the survival probability is plotted as a function
of the macroscopic axial stress applied on the unit cell
for the reference state of the MMC.

Regarding ρ=0.7, this calculation results in a
straight line of gradient 15 which is the value that was
used for the Weibull modulusm. When comparing load-
ing ratiosρ=0 and 0.7, it can be seen that at lower
stresses both calculations result in a straight line of
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Figure 4 The survival probabilitySas a function of macroscopic axial stressσzz for m=15 and 20 with loading ratiosρ=0 and 0.7 (particle diameter
= 4µm, σys=276 MPa,n=14.94 andσ0 350 MPa).

gradient 15, i.e. the survival probability variation of the
unit cell equals that of the ceramic particle. However,
when the stress exceeds ln(σzz)=5.5≈245 MPa, some
curvature occurs in case ofρ = 0, whereas the calcula-
tion with ρ = 0.7 remains a straight line. Furthermore,
it is observed that a triaxial loading ratio results in a
lower survival probability of the ceramic particle than
the uniaxial loaded case.

From the above, it can be concluded that in case of
ρ = 0.7, the survival probability of the ceramic particle
is governed by a Weibull distribution, whereas forρ =0
this is no longer the case from the point where curvature
starts.

5.2. Weibull modulus
To verify whether the gradient in Fig. 3 is the Weibull
modulusm, calculations were also done for a different
value (m = 20). The results of these calculations are
shown in Fig. 4, where the survival probability is plotted
as a function of macroscopic axial stress form = 15
and 20, again with loading ratiosρ = 0 and 0.7 (particle
diameter= 4µm,n =14.94 andσ0 =350 MPa). These
calculations result indeed in gradients 15 and 20, so the
straight line indeed represents the Weibull modulusm.
The overall appearance in case ofρ = 0 or 0.7 remains
the same; i.e. a straight line of a gradient of the applied
m for ρ = 0.7 and the occurrence of curvature forρ =
0, whereby the shape of curvature differs slightly for
bothm-values.

5.3. Stresses in the particle
Equations 2 and 3 are valid for a uniform stress distribu-
tion in ceramics [11]. To investigate the uniformity of
the stress inside the particle, 15 nodes near the interface
were chosen and for these nodes the actual Dr¨ucker-
Prager stressσDP was calculated with Equation 5 for

both loading ratiosρ = 0 and 0.7 and plotted vs. the
macroscopic axial stressσzz in Fig. 5.

It can be seen that there is a linear relation between
σDP andσzz up to approximately 330 MPa in case of
ρ = 0 and up to 1100 MPa in case ofρ = 0.7. When
the stress becomes higher than 330 or 1100 MPa,σDP
turns out to be dependent on the position in the particle,
i.e. at the same macroscopic axial stress, all 15 nodes
have a different Dr¨ucker-Prager stress. Because of the
stress distribution in the particle not being uniform, the
applied stressσ in Equations 2 and 3 should actually
be replaced byσDP(x) = σzz· f (x) where f (x) is some
function of the positionx in the particle. Equation 3
then becomes:

ln ln
1

S
= ln

(∫
v f (x)m dV

V0

)
+m · ln σzz−m · ln σ0

(7)

From this equation it can be seen, that as a result of
non-uniformity of the stress, there is an additional fac-
tor, which explains the translation along the survival
probability axis when going fromρ = 0 to 0.7.

To explain the curvature occurring forρ =0 in Figs 3
and 4, it can be concluded from Fig. 5 that, in a plot of
ln ln(1/S) vs. ln(σzz), from the point where a straight
line is no longer obtained, the stresses in the particle
are not only non-uniform, but also non-proportional
due to plasticity in the matrix surrounding the ceramic
particle. Now, f (x) in Equation 7 is also a function
of σzz. For ρ = 0, it turns out that the regime where
the stresses become non-proportional is just where the
survival probability goes rapidly from 1 to 0, while for
ρ = 0.7 this is at a stress of 1100 MPa, which will not
be reached in this calculation. The latter can be seen
in Fig. 6, in which the survival probability is plotted
versus the macroscopic axial stress for the reference
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Figure 5 The Drücker-Prager stressσDP as a function of macroscopic axial stressσzz for 15 nodes near the interface of the particle with a diameter
of 4µm (σys=276 MPa andn = 14.94).

Figure 6 The survival probabilityS as a function of macroscopic axial stressσzz for a particle with a diameter of 4µm, ρ=0 and 0.7 (m=15,
σ0=350 MPa,σys=276 MPa andn=14.94).

configuration withρ = 0 and 0.7, where for the latter
a survival probability of zero is already reached at a
macroscopic axial stress of 500 MPa.

5.4. Matrix hardening
If plasticity in the matrix surrounding the ceramic par-
ticle causes the curvature forρ=0, it seems useful to
investigate the influence of different hardening expo-
nentsn for the aluminium matrix material. The results
of these calculations are shown in Fig. 7. The survival
probability is plotted as a function of macroscopic ax-
ial stress for an MMC with an AA 6061 matrix with
hardening exponentsn = 4.35 and 14.94 respectively,

and loading ratiosρ = 0 and 0.7 (particle diameter=
4µm, m= 15 andσ0 = 350 MPa).

Again, a straight line of gradient 15 and the curvature
in case ofρ =0 above ln(σzz) =5.5 is observed. In case
of ρ = 0.7, both calculations coincide completely and
forρ =0 the calculations coincide up to the point where
curvature starts. Forρ = 0.7, this means that a variation
of the hardening exponent is of no influence since the
matrix material remains elastic throughout the loading
history. However, in case ofρ = 0, a lower hardening
exponent results in less curvature; i.e. plasticity in the
surrounding matrix occurs, but to a lesser extent as the
hardening exponent becomes lower.
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Figure 7 The survival probabilityS as a function of macroscopic axial stressσzz for hardening exponentsn=4.35 and 14.94 with loading ratios
ρ=0 and 0.7 (particle diameter= 4µm, m=15,σys=276 MPa andσ0=350 MPa).

5.5. Characteristic stress and yield stress
Whenvarying thecharacteristic stressσ0, a parallel shift
of the curves is observed. This can be seen in Fig. 8,
in which for a particle with a diameter of 4µm, m =
15 andn = 14.94, the results for characteristic stresses
σ0 = 350 and 525 MPa are shown for a loading ratio
ρ = 0. As indicated in this figure, the shift between the
calculations can be derived from Equation 7 as being
ln(350/525)15 = −6.1.

Since all calculations forρ=0 start with a straight
line of gradientm, but start to curve when the macro-
scopic axial applied stress approximates the yield stress
of the matrix material, results are also shown for calcu-
lations with three different matrix yield stresses namely,

Figure 8 The survival probabilityS as a function of macroscopic axial stressσzz for characteristic stressesσ0=350 and 525 MPa and matrix yield
stressesσys=200, 276 and 300 MPa with loading ratioρ=0 (particle diameter= 4µm, m=15 andn=14.94).

σys=200, 276 and 300 MPa. Equation 7 can be rewrit-
ten in the following equation:

ln ln
1

S
+m · ln σ0

σys
= ln

(∫
v f (x)m dV

V0

)
+m · ln σzz

σys

(8)

Now, if the left-hand term of this equation is plotted on
the vertical axis and m· ln(σzz/σys) on the horizontal
axis, a ‘mastercurve’ can be created eliminating the
effect of σ0 andσys. Two variables which still affect
the mastercurve are the matrix hardening exponent and
the Weibull modulus; the first changes the curvature
and the latter results in a vertical shift. An example
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Figure 9 ‘Mastercurve’ for characteristic stressesσ0 = 350 and 525
MPa and matrix yield stressesσys = 200, 276 and 300 MPa, all for a
fixed valuen = 14.94 andm= 15.

is given in Fig. 9 forn = 14.94. It turns out that, as
long as all deformations in the MMC are purely elastic,
f (x) is independent on the applied stress, resulting in
a gradient 1. As soon as plasticity in the surrounding
matrix occurs,f (x) becomes dependent on the applied
stress and the mastercurve diverges from this gradient.

5.6. Particle size
Finally, when the particle diameter is doubled from 4
to 8µm diameter, it can be seen in Fig. 10 that, for the
same loading ratio, the survival probability decreases
with increasing particle diameter. Besides a shift along
the survival probability axis which can be explained

Figure 10 The survival probabilitySas a function of macroscopic axial stressσzz for particles with a diameter of 4 or 8µm with loading ratiosρ =
0 and 0.7 (m= 15,σ0 = 350 MPa,σys = 276 MPa andn = 14.94).

with Equation 3 through the larger volume, the calcu-
lations for a particle with a diameter of 8µm result
in comparable lines as for a diameter of 4µm; i.e. a
straight line of gradientm= 15 in case ofρ = 0.7 and
curvature above a certainσzz-value forρ = 0. For 8µm
diameter it turns out that curvature is to a lesser extent
than for 4µm.

6. Conclusions
1. Based on present calculations it can be concluded

that the relation between the macroscopic applied stress
on the MMC and the survival probability of the ceramic
particle can be described by the Weibull modulusm, as
long as the stress distribution in the matrix surrounding
the particle is proportional to the applied load, e.g. in
Fig. 4, the particle should fail at a stress in the range
where there is a linear relation between the Dr¨ucker-
Prager stressσDP and the macroscopic axial stressσzz.

2. When loading the metal matrix composite triaxi-
ally (ρ =0.7) instead of uniaxially (ρ =0), the survival
probability of the Al2O3 particle is lower and the parti-
cle is likely to fail before plasticity in the matrix occurs.

3. Considering the parameter dependence of particle
fracture, it can be concluded that for the same loading
ratio,

• an increase in the hardening exponentn of the ma-
trix, results in coinciding calculations forρ=0.7
and 0; The calculations coincide up to the point
where curvature starts, whereby a higher harden-
ing exponent results in less curvature as a result of
less plasticity in the matrix,
• a variation of the characteristic stressσ0 results in

a parallel shift of the curves for bothρ=0 and 0.7,
• a ‘mastercurve’ for a fixed value ofn can be made

independent of characteristic stressesσ0 and matrix
yield stressesσys and
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• an increase of particle diameter (and thus volume of
the ceramic particle) decreases the survival probab-
ility of an Al2O3 particle in an AA 6061 aluminium
matrix.
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